NekoNekodouga.html

<!DOCTYPE html>
<html lang="ja">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>ねこねこ動画 - 動画共有サイト</title>
    <style>
        /* ベーススタイル */
        body {
            font-family: Arial, sans-serif;
            margin: 0;
            padding: 0;
            background-color: #f4f4f4;
        }

        header {
            background-color: #333;
            color: white;
            padding: 10px;
            text-align: center;
            position: fixed;
            width: 100%;
            top: 0;
            z-index: 100;
        }

        header h1 {
            margin: 0;
            font-size: 24px;
        }

        nav ul {
            list-style-type: none;
            padding: 0;
            margin: 10px 0 0 0;
            text-align: center;
        }

        nav ul li {
            display: inline-block;
            margin-right: 15px;
        }

        nav ul li a {
            color: white;
            text-decoration: none;
            font-size: 16px;
        }

        #searchBar {
            margin-top: 10px;
            padding: 5px;
            width: 300px;
            max-width: 80%;
            border: none;
            border-radius: 4px;
        }

        .container {
            margin-top: 100px;
            padding: 20px;
            max-width: 1200px;
            margin-left: auto;
            margin-right: auto;
        }

        .upload-container, .video-info, .description, .comments, .related-videos, .gallery {
            background-color: white;
            padding: 20px;
            margin-top: 20px;
            border-radius: 10px;
            box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
        }

        .upload-container h2, .video-info h2, .description h2, .comments h2, .related-videos h2, .gallery h2 {
            margin-top: 0;
        }

        .upload-container form input[type="file"],
        .upload-container form input[type="text"],
        .upload-container form textarea,
        .upload-container form select {
            width: 100%;
            padding: 10px;
            margin-bottom: 10px;
            border-radius: 4px;
            border: 1px solid #ccc;
        }

        .upload-container form button {
            padding: 10px 20px;
            background-color: #333;
            color: white;
            border: none;
            border-radius: 4px;
            cursor: pointer;
            transition: background-color 0.3s ease;
        }

        .upload-container form button:hover {
            background-color: #555;
        }

        .video-container {
            position: relative;
            text-align: center;
            width: 100%;
            max-width: 800px;
            margin: 0 auto;
        }

        .video-container video {
            width: 100%;
            height: auto;
            border-radius: 10px;
        }

        .comment-overlay {
            position: absolute;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;
            pointer-events: none;
            z-index: 10;
        }

        .comment {
            position: absolute;
            white-space: nowrap;
            font-size: 20px;
            text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5);
            animation: moveComment linear forwards;
        }

        @keyframes moveComment {
            from {
                left: 100%;
            }
            to {
                left: -100%;
            }
        }

        .description p, .comments p, .gallery p {
            margin: 10px 0;
        }

        .comments form textarea {
            width: 100%;
            padding: 10px;
            border-radius: 4px;
            border: 1px solid #ccc;
            resize: vertical;
            margin-bottom: 10px;
        }

        .comments form select {
            width: 100%;
            padding: 10px;
            margin-bottom: 10px;
            border-radius: 4px;
        }

        .comments form button {
            padding: 10px 20px;
            background-color: #333;
            color: white;
            border: none;
            border-radius: 4px;
            cursor: pointer;
            transition: background-color 0.3s ease;
        }

        .comments form button:hover {
            background-color: #555;
        }

        .comment-list .comment {
            background-color: #f9f9f9;
            padding: 10px;
            margin-bottom: 10px;
            border-radius: 5px;
        }

        .like-button, .dislike-button {
            background-color: #333;
            color: white;
            border: none;
            padding: 5px 10px;
            margin: 5px;
            border-radius: 5px;
            cursor: pointer;
            transition: background-color 0.3s ease;
        }

        .like-button:hover, .dislike-button:hover {
            background-color: #555;
        }

        footer {
            background-color: #333;
            color: white;
            text-align: center;
            padding: 20px;
            margin-top: 40px;
        }

        footer p {
            margin: 0;
        }

        @media (max-width: 768px) {
            nav ul li {
                display: block;
                margin: 10px 0;
            }

            #searchBar {
                width: 80%;
            }

            .video-container {
                max-width: 100%;
            }
        }
    </style>
</head>
<body>

    <!-- ヘッダー開始 -->
    <header>
        <h1>ねこねこ動画</h1>
        <nav>
            <ul>
                <li><a href="#">ホーム</a></li>
                <li><a href="#">人気動画</a></li>
                <li><a href="#">カテゴリ</a></li>
                <li><a href="#">ログイン</a></li>
            </ul>
        </nav>
        <input type="text" id="searchBar" placeholder="動画を検索..." />
    </header>
    <!-- ヘッダー終了 -->

    <div class="container">

        <!-- 動画アップロードエリア -->
        <div class="upload-container">
            <h2>動画をアップロード</h2>
            <form id="uploadForm" enctype="multipart/form-data">
                <input type="file" id="videoFile" name="video" accept="video/*" required><br>
                <input type="text" id="videoTitle" name="title" placeholder="動画タイトル" required><br>
                <textarea id="videoDescription" name="description" rows="4" placeholder="動画の説明" required></textarea><br>
                <button type="submit">アップロード</button>
            </form>
            <div id="uploadStatus"></div>
        </div>

        <!-- プレビューエリア -->
        <div class="video-container" id="previewContainer" style="display: none;">
            <h2 id="previewTitle">プレビュー: 動画タイトル</h2>
            <video controls id="videoPreview"></video>
            <div class="comment-overlay" id="commentOverlay"></div>
            <p id="previewDescription">プレビュー: 動画の説明</p>
        </div>

        <!-- コメント投稿エリア -->
        <div class="comments">
            <h2>コメントを投稿</h2>
            <form id="commentForm">
                <textarea id="commentText" rows="4" cols="50" placeholder="コメントを追加..." required></textarea><br>
                <label for="commentTime">表示タイミング (秒):</label>
                <input type="number" id="commentTime" placeholder="0" min="0" required><br>
                <label for="commentColor">コメントの色:</label>
                <select id="commentColor">
                    <option value="white">白</option>
                    <option value="red">赤</option>
                    <option value="blue">青</option>
                    <option value="green">緑</option>
                    <option value="yellow">黄色</option>
                </select><br>
                <label for="commentFontSize">フォントサイズ:</label>
                <select id="commentFontSize">
                    <option value="20px">小</option>
                    <option value="24px">中</option>
                    <option value="28px">大</option>
                </select><br>
                <label for="commentSpeed">表示速度 (秒):</label>
                <input type="number" id="commentSpeed" placeholder="10" min="5" max="20" required><br>
                <button type="submit">投稿</button>
            </form>
            <div id="commentList" class="comment-list"></div>
        </div>

        <!-- 評価機能 -->
        <div class="rating">
            <button class="like-button" id="likeButton">👍 いいね</button>
            <span id="likeCount">0</span>
            <button class="dislike-button" id="dislikeButton">👎 バッド</button>
            <span id="dislikeCount">0</span>
        </div>

    </div>

    <!-- フッター開始 -->
    <footer>
        <p>&copy; 2023 ねこねこ動画. All Rights Reserved.</p>
    </footer>
    <!-- フッター終了 -->

    <script>
        let comments = [];

        // 動画のアップロードとプレビュー処理
        document.getElementById("uploadForm").addEventListener("submit", function(event) {
            event.preventDefault();

            const fileInput = document.getElementById("videoFile");
            const file = fileInput.files[0];
            const title = document.getElementById("videoTitle").value;
            const description = document.getElementById("videoDescription").value;

            if (!file) {
                alert("動画ファイルを選択してください。");
                return;
            }

            const reader = new FileReader();
            reader.onload = function(e) {
                const videoData = e.target.result;
                document.getElementById("previewContainer").style.display = "block";
                document.getElementById("videoPreview").src = videoData;
                document.getElementById("previewTitle").textContent = "プレビュー: " + title;
                document.getElementById("previewDescription").textContent = "プレビュー: " + description;
            };
            reader.readAsDataURL(file);
        });

        // コメント投稿処理
        document.getElementById("commentForm").addEventListener("submit", function(event) {
            event.preventDefault();

            const commentText = document.getElementById("commentText").value;
            const commentTime = parseInt(document.getElementById("commentTime").value);
            const commentColor = document.getElementById("commentColor").value;
            const commentFontSize = document.getElementById("commentFontSize").value;
            const commentSpeed = parseInt(document.getElementById("commentSpeed").value);

            if (commentText && commentTime >= 0) {
                const comment = {
                    text: commentText,
                    time: commentTime,
                    color: commentColor,
                    fontSize: commentFontSize,
                    speed: commentSpeed
                };

                comments.push(comment);
                displayCommentInList(comment);
                document.getElementById("commentForm").reset();
            }
        });

        // コメントリストに表示
        function displayCommentInList(comment) {
            const commentList = document.getElementById("commentList");
            const commentDiv = document.createElement("div");
            commentDiv.classList.add("comment");
            commentDiv.textContent = `タイミング: ${comment.time}秒 - ${comment.text}`;
            commentList.appendChild(commentDiv);
        }

        // 動画の再生に合わせてコメントを表示
        const videoElement = document.getElementById("videoPreview");
        videoElement.addEventListener("timeupdate", function() {
            const currentTime = Math.floor(videoElement.currentTime);
            comments.forEach(comment => {
                if (comment.time === currentTime) {
                    displayCommentOnVideo(comment);
                }
            });
        });

        // 動画上にコメントを流す
        function displayCommentOnVideo(comment) {
            const overlay = document.getElementById("commentOverlay");
            const commentElement = document.createElement("div");
            commentElement.classList.add("comment");
            commentElement.textContent = comment.text;
            commentElement.style.color = comment.color;
            commentElement.style.fontSize = comment.fontSize;
            commentElement.style.animationDuration = `${comment.speed}s`;
            commentElement.style.top = Math.random() * 80 + "%"; // ランダムな位置
            overlay.appendChild(commentElement);

            // 一定時間後にコメントを削除
            setTimeout(() => {
                commentElement.remove();
            }, comment.speed * 1000);
        }

        // いいね・バッド機能
        document.getElementById("likeButton").addEventListener("click", function() {
            let likeCount = parseInt(document.getElementById("likeCount").textContent);
            likeCount++;
            document.getElementById("likeCount").textContent = likeCount;
        });

        document.getElementById("dislikeButton").addEventListener("click", function() {
            let dislikeCount = parseInt(document.getElementById("dislikeCount").textContent);
            dislikeCount++;
            document.getElementById("dislikeCount").textContent = dislikeCount;
        });

    </script>

</body>
</html>

PHP 配列の要素を変数に代入

<?php
// $scores = [70, 90, 80];
// $firstScore = $scores[0];
// $secondScore = $scores[1];
// $thirdScore = $scores[2];
// list($firstScore, $secondScore, $thirdScore) = $scores;
// [$firstScore, $secondScore, $thirdScore] = $scores;
// echo $firstScore . PHP_EOL;
// echo $secondScore . PHP_EOL;
// echo $thirdScore . PHP_EOL;

$x = 10;
$y = 20;
[$y, $x] = [$x, $y];
echo $x . PHP_EOL;
echo $y . PHP_EOL;

二次元画像生成AI python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from tqdm import tqdm

# データセットの変換(リサイズと正規化)
transform = transforms.Compose([
    transforms.Resize((64, 64)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))  # ピクセル値を[-1, 1]の範囲にスケーリング
])

# AnimeFaceDatasetのロード
dataset = datasets.ImageFolder(root='C:/Users/tyosu/projects/anime_faces',transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

# Generator(生成モデル)
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(100, 256),
            nn.ReLU(True),
            nn.Linear(256, 512),
            nn.ReLU(True),
            nn.Linear(512, 1024),
            nn.ReLU(True),
            nn.Linear(1024, 64 * 64 * 3),
            nn.Tanh()
        )

    def forward(self, input):
        output = self.main(input)
        return output.view(-1, 3, 64, 64)

# Discriminator(判別モデル)
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(64 * 64 * 3, 1024),
            nn.ReLU(True),
            nn.Linear(1024, 512),
            nn.ReLU(True),
            nn.Linear(512, 256),
            nn.ReLU(True),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, input):
        input_flat = input.view(-1, 64 * 64 * 3)
        return self.main(input_flat)

# モデルのインスタンス化
G = Generator()
D = Discriminator()

# ロス関数とオプティマイザ
criterion = nn.BCELoss()
optimizerD = optim.Adam(D.parameters(), lr=0.0002)
optimizerG = optim.Adam(G.parameters(), lr=0.0002)

# ランダムノイズ生成関数
def generate_noise(batch_size):
    return torch.randn(batch_size, 100)

# トレーニングループ
num_epochs = 50
for epoch in range(num_epochs):
    for i, (real_images, _) in enumerate(tqdm(dataloader)):
        batch_size = real_images.size(0)

        # 本物の画像のラベルは1、偽物の画像のラベルは0
        real_labels = torch.ones(batch_size, 1)
        fake_labels = torch.zeros(batch_size, 1)

        # Discriminatorの学習
        optimizerD.zero_grad()
        outputs = D(real_images)
        real_loss = criterion(outputs, real_labels)

        noise = generate_noise(batch_size)
        fake_images = G(noise)
        outputs = D(fake_images.detach())
        fake_loss = criterion(outputs, fake_labels)

        d_loss = real_loss + fake_loss
        d_loss.backward()
        optimizerD.step()

        # Generatorの学習
        optimizerG.zero_grad()
        outputs = D(fake_images)
        g_loss = criterion(outputs, real_labels)  # 生成画像を本物と認識させたい
        g_loss.backward()
        optimizerG.step()

    print(f'Epoch [{epoch+1}/{num_epochs}] | d_loss: {d_loss.item()} | g_loss: {g_loss.item()}')

    # 生成された画像を表示
    if (epoch + 1) % 10 == 0:
        fake_images = G(generate_noise(64)).detach().cpu()
        plt.imshow(fake_images[0].permute(1, 2, 0) * 0.5 + 0.5)
       

簡単な画像生成AI python

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image  # 画像保存のための関数
import os  # ファイルの保存先を指定するためのライブラリ

# VAEのエンコーダーとデコーダー
class VAE(nn.Module):
    def __init__(self, input_dim=784, hidden_dim=400, latent_dim=20):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc21 = nn.Linear(hidden_dim, latent_dim)
        self.fc22 = nn.Linear(hidden_dim, latent_dim)
        self.fc3 = nn.Linear(latent_dim, hidden_dim)
        self.fc4 = nn.Linear(hidden_dim, input_dim)

    def encode(self, x):
        h1 = torch.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def decode(self, z):
        h3 = torch.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar

# VAEの損失関数
def loss_function(recon_x, x, mu, logvar):
    BCE = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

# モデルの定義とデータローダーの準備
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = VAE().to(device)
optimizer = optim.Adam(vae.parameters(), lr=1e-3)

transform = transforms.ToTensor()
train_dataset = datasets.MNIST('.', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)

# トレーニングループ
vae.train()
for epoch in range(10):  # 10エポックで学習
    train_loss = 0
    for batch_idx, (data, _) in enumerate(train_loader):
        data = data.to(device)
        optimizer.zero_grad()
        recon_batch, mu, logvar = vae(data)
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.item()
        optimizer.step()
    
    print(f'Epoch {epoch + 1}, Loss: {train_loss / len(train_loader.dataset)}')

# 学習したモデルで画像生成
vae.eval()
with torch.no_grad():
    z = torch.randn(64, 20).to(device)
    sample = vae.decode(z).cpu()
    sample = sample.view(64, 1, 28, 28)  # 28x28の画像サイズに変換 (MNISTデータのフォーマット)
    
    # 保存先ディレクトリを指定
    os.makedirs('generated_images', exist_ok=True)
    save_image(sample, 'generated_images/sample.png')

    print("画像生成完了: 'generated_images/sample.png' に保存されました")